Skip to main content
Log in

Design, Modeling, and Control of Biomimetic Fish Robot: A Review

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

A comprehensive review on bio-inspired fish robots has been done in this article with an enhanced focus on swimming styles, actuators, hydrodynamics, kinematic-dynamic modeling, and controllers. Swimming styles such as body and/or caudal fin and median and/or paired fin and their variants are discussed in detail. Literature shows that most fish robots adapt carangiform in body and/or caudal fin type swimming as it gives significant thrust with a maximum speed of 3.7 m·s−1 in iSplash-II. Applications of smart or soft actuators to enhance real-time dynamics was studied from literature, and it was found that the robot built with polymer fiber composite material could reach a speed of 0.6 m·s−1. However, dynamic modeling is relatively complex, and material selection needs to be explored. The numerical and analytical methods in dynamic modeling have been investigated highlighting merits and demerits. Hydrodynamic parameter estimation through the data-driven model is widely used in offline, however online estimation of the same need to be explored. Classical controllers are frequently used for navigation and stabilization, which often encounters the linearization problem and hence, can be replaced with the state-of-the-art adaptive and intelligent controller. This article also summarizes the potential research gaps and future scopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koca G O, Korkmaz D, Bal C, Akpolat Z H, Ay M. Implementations of the route planning scenarios for the autonomous robotic fish with the optimized propulsion mechanism. Measurement: Journal of the International Measurement Confederation, 2016, 93, 232–242.

    Article  Google Scholar 

  2. Wen L, Liang J H, Wu G H, Li J L. Hydrodynamic experimental investigation on efficient swimming of robotic fish using self-propelled method. International Journal of Off shore and Polar Engineering, 2010, 20, 167–174.

    Google Scholar 

  3. Clapham R J, Hu H S. iSplash: Realizing fast Carangiform swimming to outperform a real fish. In Du R, Li Z, Youcef-Toumi K, Valdivia y Alvarado P, eds., Robot Fish. Springer Tracts in Mechanical Engineering, Springer, Berlin, Heidelberg, 2015, 193–218.

    Google Scholar 

  4. Hu H. Biologically inspired design of autonomous robotic fish at Essex. Proceedings of the IEEE SMC UK-RI Chapter Conference on Advances in Cybernetic Systems, Sheffield, England, 2006, 3–8.

    Google Scholar 

  5. Bandyopadhyay P R. Trends in biorobotic autonomous undersea vehicles. IEEE Journal of Oceanic Engineering, 2005, 30, 109–139.

    Article  Google Scholar 

  6. Du R, Li Z, Youcef-Toumi K, Valdivia y Alvarado P. Introduction. In Du R, Li Z, Youcef-Toumi K, Valdivia y Alvarado P, eds., Robot Fish. Springer, Berlin, Heidelberg, 2015, 1–24.

    Chapter  MATH  Google Scholar 

  7. Pettigrew J B. Animal Locomotion: Or, Walking, Swimming, and Flying, with a Dissertation on Aëronautics, H S King & Company, New York, USA, 1873.

    Google Scholar 

  8. Breder C. The Locomotion of Fishes. Zoologica - Office of the Society, New York, USA, 1926.

    Google Scholar 

  9. Gray J. Studies in animal locomotion: I. The movement of fish with special reference to the eel. Journal of Experimental Biology, 1933, 10, 88–104.

    Google Scholar 

  10. Videler J J. Fish Swimming. Chapman and Hall, London, UK, 1993.

    Book  Google Scholar 

  11. Lighthill M J. Hydromechanics of aquatic animal propulsion. Annual Review of Fluid Mechanics, 2003, 1, 413–446.

    Article  Google Scholar 

  12. Lighthill M J. Aquatic animal propulsion of high hydrome-chanical efficiency. Journal of Fluid Mechanics, 1970, 44, 265–301.

    Article  MATH  Google Scholar 

  13. Lighthill M J. Large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society B: Biological Sciences, London, UK, 1971, 125–138.

    Google Scholar 

  14. Triantafyllou M S, Triantafyllou G S. An efficient-swimming machine. Scientific American, 1995, 272, 64–70.

    Article  Google Scholar 

  15. Liu J D, Hu H S. A 3D simulator for autonomous robotic fish. International Journal of Automation and Computing, 2004, 1, 42–50.

    Article  Google Scholar 

  16. Liu J D, Hu H S. Biological inspiration: From Carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering, 2010, 7, 35–48.

    Article  Google Scholar 

  17. Yang G H, Ryuh Y. Design of high speed fish-like robot “Ichthus V5.7”. 10th International Conference on Ubiquitous Robots and Ambient Intelligence, Jeju, South Korea, 2013, 451–453.

    Google Scholar 

  18. Clapham R J, Hu H S. iSplash-I: High performance swimming motion of a carangiform robotic fish with full-body coordination. Proceedings - IEEE International Conference on Robotics and Automation, Hong Kong, China, 2014, 322–327.

    Google Scholar 

  19. Scaradozzi D, Palmieri G, Costa D, Pinelli A. BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Engineering, 2017, 130, 437–453.

    Article  Google Scholar 

  20. Liu H L, Tang Y F, Zhu Q X, Xie G M. Present research situations and future prospects on biomimetic robot fish. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 458–480.

    Article  Google Scholar 

  21. Bandyopadhyay P R, Beal D N, Menozzi A. Biorobotic insights into how animals swim. The Journal of Experimental Biology, 2008, 211, 206–214.

    Article  Google Scholar 

  22. Colgate J E, Lynch K M. Mechanics and control of swimming: A review. IEEE Journal of Oceanic Engineering, 2004, 29, 660–673.

    Article  Google Scholar 

  23. Raj A, Thakur A. Fish-inspired robots: Design, sensing, actuation, and autonomy - A review of research. Bioinspiration & Biomimetics, 2016, 11, 031001.

    Article  Google Scholar 

  24. Yu J Z, Wang M, Dong H F, Zhang Y L, Wu Z X. Motion control and motion coordination of bionic robotic fish: A review. Journal of Bionic Engineering, 2018, 15, 579–598.

    Article  Google Scholar 

  25. Chu W S, Lee K T, Song S H, Han M W, Lee J Y, Kim H S, Kim M S, Park Y J, Cho K J, Ahn S H. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1281–1292.

    Article  Google Scholar 

  26. Faudzi A A M, Razif M R M, Nordin N A M, Natarajan E, Yaakob O. A review on development of robotic fish. Journal of Transport System Engineering, 2014, 1, 12–22.

    Google Scholar 

  27. Xia D, Chen W S, Liu J K, Wu Z. Effect of head swing motion on hydrodynamic performance of fishlike robot propulsion. Journal of Hydrodynamics, 2016, 28, 637–647.

    Article  Google Scholar 

  28. Liu J D, Hu H S. Biologically inspired behaviour design for autonomous robotic fish. International Journal of Automation and Computing, 2006, 3, 336–347.

    Article  Google Scholar 

  29. Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999, 24, 237–252.

    Article  Google Scholar 

  30. Niu X L, Xu J X, Ren Q Y, Wang Q G. Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Transactions on Industrial Electronics, 2014, 61, 4780–4787.

    Article  Google Scholar 

  31. Niu X L, Xu J X. Modeling, control and locomotion planning of an Anguilliform robotic fish. Unmanned Systems, 2014, 02, 295–321.

    Article  Google Scholar 

  32. Xu J X, Niu X L. Gait generation and sliding mode control design for anguilliform biomimetic robotic fish. IECON Proceedings (Industrial Electronics Conference), Melbourne, VIC, Australia, 2011, 3947–3952.

    Google Scholar 

  33. Xu J X, Niu X L, Ren Q Y, Wang Q G. Collision-free motion planning for an Anguilliform robotic fish. IEEE International Symposium on Industrial Electronics, Hangzhou, China, 2012, 1268–1273.

    Google Scholar 

  34. Niu X L, Xu J X, Ren QY, Wang Q G. Locomotion generation and motion library design for an Anguilliform robotic fish. Journal of Bionic Engineering, 2013, 10, 251–264.

    Article  Google Scholar 

  35. Suebsaiprom P, Lin C L, Engkaninan A. Undulatory locomotion and effective propulsion for fish-inspired robot. Control Engineering Practice, 2017, 58, 66–77.

    Article  Google Scholar 

  36. Yu J Z, Wu Z X, Wang M, Tan M. CPG network optimization for a biomimetic robotic fish via PSO. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1962–1968.

    Article  MathSciNet  Google Scholar 

  37. Suebsaiprom P, Lin C L. Maneuverability modeling and trajectory tracking for fish robot. Control Engineering Practice, 2015, 45, 22–36.

    Article  Google Scholar 

  38. Nguyen P L, Lee B R, Ahn K K. Thrust and swimming speed analysis offish robot with non-uniform flexible tail. Journal of Bionic Engineering, 2016, 13, 73–83.

    Article  Google Scholar 

  39. Kodati P, Hinkle J, Winn A, Deng X Y. Mcroautonomous robotic ostraciiform (MARCO): Hydrodynamics, design, and fabrication. IEEE Transactions on Robotics, 2008, 24, 105–117.

    Article  Google Scholar 

  40. Peng J, Dabiri J O, Madden P G, Lauder G V. Non-invasive measurement of instantaneous forces during aquatic locomotion: A case study of the bluegill sunfish pectoral fin. Journal of Experimental Biology, 2007, 210, 685–698.

    Article  Google Scholar 

  41. Blake R W. The swimming of the mandarin fish Synchropus picturatus (Callionyiidae: Teleostei). Journal of the Marine Biological Association of the United Kingdom, 1979, 59, 421–428.

    Article  Google Scholar 

  42. Behbahani S B, Tan X. Design and modeling of flexible passive rowing joint for robotic fish pectoral fins. IEEE Transactions on Robotics, 2016, 32, 1119–1132.

    Article  Google Scholar 

  43. Zhang S W, Qian Y, Liao P, Qin F H, Yang J M. Design and control of an agile robotic fish with integrative biomimetic mechanisms. IEEEIASME Transactions on Mechatronics, 2016, 21, 1846–1857.

    Article  Google Scholar 

  44. Behbahani S B, Tan X B. Role of pectoral fin flexibility in robotic fish performance. Journal of Nonlinear Science, 2017, 27, 1155–1181.

    Article  MathSciNet  MATH  Google Scholar 

  45. Guo S X, Fukuda T, Asaka K. A new type of fish-like underwater microrobot. IEEEIASME Transactions on Mechatronics, 2003, 8, 136–141.

    Article  Google Scholar 

  46. Punning A, Anton M, Kruusmaa M. A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. Proceedings of IEEE International Conference on Mechatronics and Robotics, Aachen, Germany, 2004, 241–245.

    Google Scholar 

  47. Jin H, Dong E B, Alici G, Mao S X, Min X, Liu C S, Low K H, Yang J. A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspiration & Biomimetics, 2016, 11, 056012.

    Article  Google Scholar 

  48. Wang Z L, Hang G R, Li J A, Wang Y W, Xiao K. A micro-robot fish with embedded SMA wire actuated flexible bio-mimetic fin. Sensors and Actuators A: Physical, 2008, 144, 354–360.

    Article  Google Scholar 

  49. Song S H, Lee J Y, Rodrigue H, Choi I S, Kang Y J, Ahn S H. 35 Hz shape memory alloy actuator with bending-twisting mode. Scientific Reports, 2016, 6, 21118.

    Article  Google Scholar 

  50. Ye Z H, Hou P Q, Chen Z, Member I. 2-D maneuverable robotic fish propelled by multiple ionic polymer-metal composite artificial fins. International Journal of Intelligent Robotics and Applications, 2017, 1, 195–208.

    Article  Google Scholar 

  51. Aureli M, Kopman V, Porfiri M. Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Transactions on Mechatronics, 2010, 15, 603–614.

    Article  Google Scholar 

  52. Wang T M, Shen Q, Wen L, Liang J H. On the thrust performance of an ionic polymer-metal composite actuated robotic fish: Modeling and experimental investigation. Science China Technological Sciences, 2012, 55, 3359–3369.

    Article  Google Scholar 

  53. Ye X F, Su Y D, Guo S X, Wang L Q. Design and realization of a remote control centimeter-scale robotic fish. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi’an, China, 2008, 25–30.

    Google Scholar 

  54. Chen Z, Urn T I, Zhu J Z, Bart-Smith H. Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2011, 2012, 2, 817–824.

    Google Scholar 

  55. Kim J, Jeon J H, Kim H J, Lim H, Oh I K. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano, 2014, 8, 2986–2997.

    Article  Google Scholar 

  56. Aureli M, Kopman V, Porfiri M. Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Transactions on Mechatronics, 2010, 15, 603–614.

    Article  Google Scholar 

  57. Chen Z, Shatara S, Tan X B. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Transactions on Mechatronics, 2010, 15, 448–459.

    Article  Google Scholar 

  58. Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators A: Physical, 2011, 168, 131–139.

    Article  Google Scholar 

  59. Chen Z, Um T I, Bart-Smith H. Bio-inspired robotic manta ray powered by ionic polymer-metal composite artificial muscles. International Journal of Smart and Nano Materials, 2012, 3, 296–308.

    Article  Google Scholar 

  60. Um T I, Chen Z, Bart-Smith H. A novel electroactive polymer buoyancy control device for bio-inspired underwater vehicles. IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 172–177.

    Google Scholar 

  61. Zhao W J, Ming A G, Shimojo M. Development of high-performance soft robotic fish by numerical coupling analysis. Applied Bionics and Biomechanics, 2018, 5697408.

    Google Scholar 

  62. Katzschmann R K, DelPreto J, MacCurdy R, Rus D. Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 2018, 3, eaar3449.

    Article  Google Scholar 

  63. Tolley M T, Shepherd R F, Mosadegh B, Galloway K C, Wehner M, Karpelson M, Wood R J, Whitesides G M. A resilient, untethered soft robot. Soft Robotics, 2014, 1, 213–223.

    Article  Google Scholar 

  64. Zhang ZG, Yamashita N, Gondo M, Yamamoto A, Higuchi T. Electrostatically actuated robotic fish: Design and control for high-mobility open-loop swimming. IEEE Transactions on Robotics, 2008, 24, 118–129.

    Article  Google Scholar 

  65. Bonnet F, Crot N, Burnier D, Mondada F. Design methods for miniature underwater soft robots. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 2016, 1365–1370.

    Google Scholar 

  66. Bonnet F, Kato Y, Halloy J, Mondada F. Infiltrating the zebrafish swarm: design, implementation and experimental tests of a miniature robotic fish lure for fish-robot interaction studies. Artificial Life and Robotics, 2016, 21, 239–246.

    Article  Google Scholar 

  67. Takada Y, Araki R, Nakanishi Y, Nonogaki M, Ebita K, Wakisaka T. Development of small fish robots powered by small and ultra-light passive-type polymer electrolyte fuel cells. Journal of Robotics and Mechatronics, 2010, 22, 150–157.

    Article  Google Scholar 

  68. Borazjani I. Numerical Simulations of Fluid-Structure Interaction Problems in Biological Flows. [2016-05-18], http://hdl.handle.net/11299/46070.

  69. Videler J J. Interactions between fish and water. Fish Swimming, Springer, Dordrecht, 1993, 1–22.

    Chapter  Google Scholar 

  70. Yu J Z, Yuan J, Wu Z X, Tan M. Data-driven dynamic modeling for a swimming robotic fish. IEEE Transactions on Industrial Electronics, 2016, 63, 5632–5640.

    Article  Google Scholar 

  71. Fiazza C, Salumae T, Listak M, Kulikovskis G, Templeton R, Akanyeti O, Megill W, Fiorini P, Kruusmaa M. Biomimetic mechanical design for soft-bodied underwater vehicles. OCEANS’10 IEEE Sydney, OCEANSSYD 2010, Sydney, NSW, Australia, 2010, 1–7.

    Google Scholar 

  72. El Daou H, Salumae T, Chambers L D, Megill W M, Kruusmaa M. Modelling of a biologically inspired robotic fish driven by compliant parts. Bioinspiration & Biomimetics, 2014, 9, 016010.

    Article  Google Scholar 

  73. Kopman V, Laut J, Acquaviva F, Rizzo A, Porfiri M. Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE Journal of Oceanic Engineering, 2015, 40, 209–221.

    Article  Google Scholar 

  74. Alvarado P V Y, Youcef-Toumi K. Design of machines with compliant bodies for biomimetic locomotion in liquid environments. Journal of Dynamic Systems, Measurement, and Control, 2006, 128, 3–13.

    Article  Google Scholar 

  75. Kopman V, Porfiri M. Design, modeling, and characterization of a miniature robotic fish for research and education in biomimetics and bioinspiration. IEEEIASME Transactions on Mechatronics, 2013, 18, 471–483.

    Article  Google Scholar 

  76. Meirovitch L. Fundamentals of Vibrations. McGraw-Hill, New York, USA, 2001.

    Book  Google Scholar 

  77. Yu J Z, Wang C, Xie G M. Coordination of multiple robotic fish with applications to underwater robot competition. IEEE Transactions on Industrial Electronics, 2016, 63, 1280–1288.

    Article  Google Scholar 

  78. Khatib B S. Springer Handbook of Robotics, Springer, Berlin, Heidelberg, 2016.

    MATH  Google Scholar 

  79. Yu J Z, Zhang C, Liu L Q. Design and control of a single-motor-actuated robotic fish capable of fast swimming and maneuverability. IEEEIASME Transactions on Mecha-tronics, 2016, 21, 1711–1719.

    Article  Google Scholar 

  80. Zhong Y, Song J L, Yu H Y, Du R X. Toward a transform method from lighthill fish swimming model to biomimetic robot fish. IEEE Robotics and Automation Letters, 2018, 3, 2632–2639.

    Article  Google Scholar 

  81. Yu J Z, Sun F H, Xu D, Tan M. Embedded vision-guided 3-D tracking control for robotic fish. IEEE Transactions on Industrial Electronics, 2016, 63, 355–363.

    Article  Google Scholar 

  82. Chowdhury A R, Kumar V, Prasad B, Kumar R Panda S K. Kinematic study and implementation of a bio-inspired robotic fish underwater vehicle in a lighthill mathematical framework. Robotics and Biomimetics, 2014, 1, 15.

    Article  Google Scholar 

  83. Lighthill M J. Note on the swimming of slender fish. Journal of Fluid Mechanics, 1960, 9, 305.

    Article  MathSciNet  Google Scholar 

  84. Carling J, Williams T L, Bowtell G Self-propelled anguil-liform swimming: simultaneous solution of the two-dimensional navier-stokes equations and Newton’s laws of motion. Journal of Experimental Biology, 1998, 201, 3143–3166.

    Google Scholar 

  85. Kane T R, Levinson D A. The use of Kanes’s dynamical equations in robotics. The International Journal of Robotics Research, 1983, 2, 3–21.

    Article  Google Scholar 

  86. Yen W K, Sierra D M, Guo J. Controlling a robotic fish to swim along a wall using hydrodynamic pressure feedback. IEEE Journal of Oceanic Engineering, 2018, 43, 369–380.

    Article  Google Scholar 

  87. Zhou C, Hou Z G, Cao Z, Wang S, Tan M. Motion modeling and neural networks based yaw control of a biomimetic robotic fish. Information Sciences, 2013, 237, 39–48.

    Article  Google Scholar 

  88. Kaihatu J M, Ananthakrishnan P. Mechanics of ocean waves. In Dhanak M R, Xiros N I, eds., Springer Handbook of Ocean Engineering, Springer, Cham, 2016, 77–100.

    Chapter  Google Scholar 

  89. Taylor G. Analysis of the swimming of long and narrow animals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1952, 214, 158–183.

    Article  MATH  Google Scholar 

  90. Wu T Y T. Swimming of a waving plate. Journal of Fluid Mechanics, 1961, 10, 321–344.

    Article  MathSciNet  MATH  Google Scholar 

  91. Wang J, McKinley P K, Tan X. Dynamic modeling of robotic fish with a base-actuated flexible tail. Journal of Dynamic Systems, Measurement, and Control, 2014, 137, 011004.

    Article  Google Scholar 

  92. Hu T, Low K H, Shen L, Xu X. Effective phase tracking for bioinspired undulations of robotic fish models: A learning control approach. IEEEIASME Transactions on Mecha-tronics, 2014, 19, 191–200.

    Article  Google Scholar 

  93. Chen X Y, Yu J Z, Wu Z X, Meng Y, Kong S H. Toward a maneuverable miniature robotic fish equipped with a novel magnetic actuator system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 1–11.

    Google Scholar 

  94. Ljung L. System Identification: Theory for the User. Prentice Hall, Upper Saddle River, NJ, USA, 1999.

    MATH  Google Scholar 

  95. Unbehauen H, Rae G P, Rao G P. A review of identification in continuous-time systems. Annual Reviews in Control, 1998, 22, 145–171.

    Article  Google Scholar 

  96. Saurad V, Xu J X. Analytic modelling for precise speed tracking of multilink robotic fish. IEEE Transactions on Industrial Electronics, 2018, 65, 5665–5672.

    Article  Google Scholar 

  97. Saurad V, Xu J X. Data-assisted modeling and speed control of a robotic fish. IEEE Transactions on Industrial Electronics, 2017, 64, 4150–4157.

    Article  Google Scholar 

  98. Hoang K A, Vo T Q. A study on fuzzy based controllers design for depth control of a 3-joint Carangiform fish robot. 2013 International Conference on Control, Automation and Information Sciences, Nha Trang, Vietnam, 2013, 289–294.

    Chapter  Google Scholar 

  99. Suebsaiprom P, Saimek S, Chaisawadi A. Water level control for stabilizing platform. Proceeding of ECTI Annual Conference, 2004, 226–229.

    Google Scholar 

  100. Zhou C, Cao Z Q, Wang S, Tan M. The posture control and 3-D locomotion implementation of biomimetic robot fish. IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 5406–5411.

    Google Scholar 

  101. Suebsaiprom P, Lin C L. 2-DOF barycenter mechanism for stabilization of fish-robots. Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications, Melbourne, VIC, Australia, 2013, 1119–1122.

    Google Scholar 

  102. Yu J Z, Liu L Z, Wang L, Tan M, Xu D. Turning control of a multilink biomimetic robotic fish. IEEE Transactions on Robotics, 2008, 24, 201–206.

    Article  Google Scholar 

  103. Zhao W, Hu YH, Zhang L, Wang L. Design and CPG-based control of biomimetic robotic fish. IET Control Theory & Applications, 2009, 3, 281–293.

    Article  Google Scholar 

  104. Hu Y H, Liang J H, Wang T M. Parameter synthesis of coupled nonlinear oscillators for CPG-based robotic locomotion. IEEE Transactions on Industrial Electronics, 2014, 61, 6183–6193.

    Article  Google Scholar 

  105. Hu Y H, Tian W C, Liang J H, Wang T M. Learning fish-like swimming with a CPG-based locomotion controller. IEEE International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 1863–1868.

    Google Scholar 

  106. Yu J Z, Tan M, Chen J, Zhang J W. A survey on CPG-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 441–456.

    Article  Google Scholar 

  107. Zhao W, Yu J Z, Fang Y M, Wang L. Development of multi-mode biomimetic robotic fish based on central pattern generator. IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 3891–3896.

    Google Scholar 

  108. Phamduy P, Cheong J, Porfiri M. An Autonomous Charging System for a Robotic Fish. IEEEIASME Transactions on Mechatronics, 2016, 21, 2953–2963.

    Article  Google Scholar 

  109. Li X, Ren Q, Xu J X. Precise speed tracking control of a robotic fish via iterative learning control. IEEE Transactions on Industrial Electronics, 2016, 63, 2221–2228.

    Google Scholar 

  110. Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer sctuators. Soft Robotics. 2014, 1, 75–87.

    Article  Google Scholar 

  111. Chuang M C, Hwang JN, Williams K, Towler R. Tracking live fish from low-contrast and low-frame-rate stereo videos. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25, 167–179.

    Article  Google Scholar 

  112. Pizarro O, Eustice R M, Singh H. Large area 3-D reconstructions from underwater optical surveys. IEEE Journal of Oceanic Engineering, 2009, 34, 150–169.

    Article  Google Scholar 

  113. Celebi A T, Ertürk S. Visual enhancement of underwater images using Empirical Mode Decomposition. Expert Systems with Applications, 2012, 39, 800–805.

    Article  Google Scholar 

  114. Schehuler Y, Karpel N. Clear underwater vision. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA, 2004, 536–543.

    Google Scholar 

  115. Zhang F T, Ennasr O, Litchman E, Tan X B. Autonomous sampling of water columns using gliding robotic fish: Algorithms and harmful-algae-sampling experiments. IEEE Systems Journal, 2016, 10, 1271–1281.

    Article  Google Scholar 

  116. Kato N. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE Journal of Oceanic Engineering, 2000, 25, 121–129.

    Article  Google Scholar 

  117. Cao Z Q, Shen F, Zhou C, Gu N, Nahavandi S, Xu D. Heading control for a robotic dolphin based on a self-tuning fuzzy strategy. International Journal of Advanced Robotic Systems, 2016, 13, 28.

    Article  Google Scholar 

  118. Niu Y G Wang X Y, Hu C. Neural network output feedback control for uncertain robot. Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002, 1980–1984.

    Google Scholar 

  119. Hoang K A, Vo T Q. A study on controllers design based on centroid displacements for depth motion of a 3-joint Caran-giform fish robot. In Zelinka I, Duy V, Cha J, eds., AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Lecture Notes in Electrical Engineering, Springer, Berlin, Heidelberg, 2014, 282, 545–554.

    Google Scholar 

  120. Zou K X, Wang C, Xie G M, Chu T G, Wang L, Jia Y M. Cooperative control for trajectory tracking of robotic fish. sProceedings of the American Control Conference, St. Louis, MO, USA, 2009, 5504–5509.

    Google Scholar 

  121. Wen L, Wang T M, Wu G H, Liang J H, Wang C L. Novel method for the modeling and control investigation of efficient swimming for robotic fish. IEEE Transactions on Industrial Electronics, 2012, 59, 3176–3188.

    Article  Google Scholar 

  122. Tu Duong V, Kim H K, Nguyen T T, Oh S J, Kim S B. Position Control of a Small Scale Quadrotor Using Block Feedback Linearization Control. In Zelinka I, Duy V, Cha J, eds., AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Lecture Notes in Electrical Engineering, Springer, Berlin, Heidelberg, 2014, 282, 525–534.

    Google Scholar 

  123. Barrett D S, Triantafyllou M S, Yue D K P, Grosenbaugh M A, Wolfgang M J. Drag reduction in fish-like locomotion. Journal of Fluid Mechanics, 1999, 392, 183–212.

    Article  MathSciNet  MATH  Google Scholar 

  124. Yu J Z, Tan M, Wang S, Chen E. Development of a bio-mimetic robotic fish and its control algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34, 1798–1810.

    Article  Google Scholar 

  125. Cai Y R, Bi S S, Zheng L C. Design optimization of a bionic fish with multi-joint fin rays. Advanced Robotics, 2012, 26, 177–196.

    Article  Google Scholar 

  126. Zhou C L, Low K H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Transactions on Mechatronics, 2012, 17, 25–35.

    Article  Google Scholar 

  127. Wu Z X, Yu J Z, Tan M, Zhang J W. Kinematic comparison of forward and backward swimming and maneuvering in a self-propelled sub-carangiform robotic fish. Journal of Bionic Engineering, 2014, 11, 199–212.

    Article  Google Scholar 

  128. Chen X Y, Wu Z X, Zhou C, Yu J Z. Design and implementation of a magnetically actuated miniature robotic fish, IFAC-PapersOnLine, 2017, 50, 6851–6856.

    Article  Google Scholar 

  129. Zhang C, Yu J Z, Tan M. Swimming performance of a robotic fish in both straight swimming and making a turn. IEEE International Conference on Mechatronics and Automation, Beijing, China, 2015, 1111–1115.

    Google Scholar 

  130. Anderson J M, Chhabra N K. Maneuvering and stability performance of a robotic tuna. Integrative and Comparative Biology, 2002, 42, 118–126.

    Article  Google Scholar 

  131. Alvarado P V Y, Youcef-Toumi K. Modeling and design methodology of an efficient underwater propulsion system. IASTED International Conference Robotics and Applications, Salzburg, Austria, 2003, 161–166.

    Google Scholar 

  132. Berlinger F, Dusek J, Gauci M, Nagpal R. Robust maneuverability of a miniature, low-cost underwater robot using multiple fin actuation. IEEE Robotics and Automation Letters, 2018, 3, 140–147.

    Article  Google Scholar 

  133. Ay M, Korkmaz D, Koca G O, Bal C, Akpolat Z H. Mechatronic design and manufacturing of the intelligent robotic fish for bio-inspired swimming modes. Electronics, 2018, 7, 118.

    Article  Google Scholar 

  134. Manfredi L, Assaf T, Mintchev S, Marrazza S, Capantini L, Orofino S, Ascari L, Grillner S, Wallén P, Ekeberg Ö, Stefanini C, Dario P. A boinspired autonomous swimming robot as a tool for studying goal-directed locomotion. Biological Cybernetics, 2013, 107, 513–527.

    Article  Google Scholar 

  135. Crespi A, Karakasiliotis K, Guignard A, Ijspeert A J. Sala-mandra robotica II: An amphibious robot to study salamander-like swimming and walking gaits. IEEE Transactions on Robotics, 2013, 29, 308–320.

    Article  Google Scholar 

  136. Crespi A, Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot. IEEE Transactions on Robotics, 2008, 24, 75–87.

    Article  Google Scholar 

  137. Yu S M, Ma S G, Li B, Wang Y C. An amphibious snake-like robot: Design and motion experiments on ground and in water. IEEE International Conference on Information and Automation, Zhuhai, China, 2009, 500–505.

    Google Scholar 

  138. Najem J, Sarles S A, Akle B, Leo D J. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Materials and Structures, 2012, 21, 094026.

    Article  Google Scholar 

  139. Song S H, Kim M S, Rodrigue H, Lee J Y, Shim J E, Kim M C, Chu W S, Ahn S H. Turtle mimetic soft robot with two swimming gaits. Bioinspiration & Biomimetics, 2016, 11, 036010.

    Article  Google Scholar 

  140. Shi L W, Guo S, Asaka K. A novel jellyfish-like biomimetic microrobot. IEEEI/CME International Conference on Complex Medical Engineering, Gold Coast, QLD, Australia, 2010, 277–281.

    Google Scholar 

  141. Wang Z L, Hang G R, Wang Y W, Li J, Du W. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Materials and Structures, 2008, 17, 025039.

    Article  Google Scholar 

  142. Wang Z L, Wang Y W, Li J A, Hang G R. A micro biomimetic manta ray robot fish actuated by SMA. IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 2009, 1809–1813.

    Chapter  Google Scholar 

  143. Heo S, Wiguna T, Park H C, Goo N S. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of Bionic Engineering, 2007, 4, 151–158.

    Article  Google Scholar 

  144. Wang S, Huang B, McCoul D, Li M Y, Mu L L, Zhao J Z. A soft breaststroke-inspired swimming robot actuated by dielectric elastomers. Smart Materials and Structures, 2019, 28, 045006.

    Article  Google Scholar 

  145. Tomie M, Takiguchi A, Honda T, Yamasaki J. Turning performance of fish-type microrobot driven by external magnetic field. IEEE Transactions on Magnetics, 2005, 41, 4015–4017.

    Article  Google Scholar 

  146. Liang J H, Wang T M, Wen L. Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics, 2011, 28, 70–79.

    Article  Google Scholar 

  147. Su Z S, Yu J Z, Tan M, Zhang J W. Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Transactions on Mechatronics, 2014, 19, 329–338.

    Article  Google Scholar 

  148. Wang W, Gu D B, Xie G M. Autonomous optimization of swimming gait in a fish robot with multiple onboard sensors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 891–903.

    Article  Google Scholar 

  149. Salazar R, Fuentes V, Abdelkefi A. Classification of biological and bioinspired aquatic systems: A review. Ocean Engineering, 2018, 148, 75–114.

    Article  Google Scholar 

  150. Wöhl S, Schuster S. The predictive start of hunting archer fish: A flexible and precise motor pattern performed with the kinematics of an escape C-start. The Journal of Experimental Biology, 2007, 210, 311–324.

    Article  Google Scholar 

  151. Barrett D, Grosenbaugh M, Triantafyllou M. The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. Proceedings of Symposium on Autonomous Underwater Vehicle Technology, Monterey, CA, USA, 1996, 1–9.

    Google Scholar 

  152. Xiang C Q, Guo J L, Chen Y, Hao L N, Davis S. Development of a SMA-Fishing-Line-McKibben Bending Actuator. IEEE Access, 2018, 6, 27183–27189.

    Article  Google Scholar 

  153. Yang Y Q, Wang J, Wu Z J, Yu J Z. Fault-Tolerant Control of a CPG-Governed Robotic Fish. Engineering, 2018, 4, 861–868.

    Article  Google Scholar 

  154. Li X F, Ren Q Y, Xu J X. An equilibrium-based learning approach with application to robotic fish. Nonlinear Dynamics, 2018, 94, 2715–2725.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manigandan Nagarajan Santhanakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, P., Kumar Sidharthan, R. & Nagarajan Santhanakrishnan, M. Design, Modeling, and Control of Biomimetic Fish Robot: A Review. J Bionic Eng 16, 967–993 (2019). https://doi.org/10.1007/s42235-019-0111-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0111-7

Keywords

Navigation